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Problem 18 – Abella’s Honeycomb

Abella is investigating honeycombs comprising identical regular hexagonal cells and forming 
themselves a regular hexagon.  The order of the honeycomb corresponds to the number of 
cells on one side.  The cells are numbered from 1 to the total  number of cells within the 
honeycomb.  

As  for  the  honeycombs of  order  3 (see the attached example),  Abella realizes  that  it  is  
possible to arrange the cell numbers in such a way that the difference of any two adjacent  
cell numbers is always at least 5, but for 6 this is impossible.

What is the greatest possible minimal difference of two adjacent cells in a honeycomb of 
order 5?1

Procedure

1. Let’s develop a strategy to fill in the numbers into a honeycomb of any order.
2. After that let’s show that the given example corresponds to this strategy.
3. Then let’s fill in a honeycomb of order 5.
4. And last, let’s calculate the requested minimal difference thereof.

At the end we will have a formula for the greatest minimal difference a(n) for a honeycomb 
of any order n.

This  problem  deals  with  numbers  arranged  in  triangles  rather  than  in  hexagons.   The 
difference of the three numbers in the positions of the red, blue and green dots should never  
be less than a minimal difference:



 

If we add one more dot (e. g. beneath, marked ), it has to have at least this difference from 
the blue and green dots, too.

1 problem translated from homepage.hispeed.ch/FSJM/documents/22_Quarts_ind.pdf by
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

 



The difference from the red dot is irrelevant.

We are free to color it red, too:



 



Let’s go on with all triangles of the honeycomb of order 5.  Every additional dot must not be 
the same color as one of the other two corners of the triangle:

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ●

(The colored dashed lines do not represent the triangles, but merely link the dots of the same 
color.)
 
Thus we have 21 red, 21 blue and 19 green dots, 61 dots altogether.  Let’s divide the numbers 
from 1 to 61 into three groups.  

In order to maximize the mean difference between numbers of different groups we put e. g. 
the 21 smallest numbers into the red, the 21 biggest numbers into the blue, and the other 19 
into the green group:
 

red 1…21
green 22…40
blue 41…61

Why creating three groups only and not more?  The more groups we have, the smaller every 
group and the smaller the mean distance between the individual groups’ numbers!

Furthermore it is advisable to keep the smaller numbers from all groups together as a whole as 
well as the corresponding bigger numbers.  Say, from left to right and from top to bottom.

So we get – arranged in a linear, parallel mode (but disregarding the honeycomb structure 
as such yet) – the following picture:
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22

41
D

1 23

42
D

2 24

43
D

3 25

44
D

4 26

… … …

Where the smallest difference (marked D) is 18.  In the honeycomb itself the vertical columns 
will be split (e. g. along the dashed line in the above picture) and probably shifted against  
each other, producing a smaller  D (decreased by 1).  This shifting and decreasing by 1 will 
occur every time we increase the factor k in the order n by 1, when n = 3· k + 2.

Let’s fill in and check all of the 3! = 6 permutations of the three groups for its minimal D.

43 6 29 52 15
\ \ \

2 25 48 11 34 57
\ \ \

22 44 7 30 53 16 38
\ \ \ \

41 3 26 49 12 35 58 20
\ \ \ \

1 23 45 8 31 54 17 39 61
\ \ \ \

42 4 27 50 13 36 59 21
\ \ \ \

24 46 9 32 55 18 40
\ \ \

5 28 51 14 37 60
\ \ \

47 10 33 56 19

The above variant produces a minimal difference of  18 (marked by \).  Some others only 
produce a minimum of 17 or less.

Rotating slightly the initially presented honeycomb, we realize exactly the same pattern (left 
and right side mirrored; minimal difference of 5; group sizes of 6, 7 and 6, totalling 19 cells): 
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Now let’s deal with formulas.

The total number of cells in a honeycomb of order n is s(n),
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The smallest group contains not more than 
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 cells, which is also the greatest possible 
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Taking into account that ∆ is linearly decreased with k of n = 3· k + 2, we get
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The correction term c is derived from a discrete order, say n = 5, where we already found that 
∆  = 18:

cc
n

−−=−−−−==
=

∆ 120
3
25)15(518

5
from which c = 1.

This ∆  is valid for n = 2 mod 3.
Similar formulas can be found for n = 0 mod 3 and n = 1 mod 3:
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Table of the first few values of n:
n s(n) Δ(n)
2 7 1
3 19 5
4 37 11
5 61 18
6 91 28

See more values under the OEIS sequence A240438!
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For a «perfect» OEIS sequence we would like to let it start with n = 1.  The above formula gives 
us Δ(1) = 0, which value can be used as a definition for a single cell honeycomb (as e. g. 0! = 
1).  But for all those who’s mathematical conscience says «nyet!», we let the sequence start 
with n = 2.  
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