login
A240406
T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4
6
1, 2, 2, 3, 5, 3, 4, 14, 14, 4, 7, 24, 77, 24, 7, 10, 77, 235, 235, 77, 10, 15, 182, 1381, 1304, 1381, 182, 15, 24, 397, 5566, 13648, 13648, 5566, 397, 24, 35, 1164, 21413, 98837, 257243, 98837, 21413, 1164, 35, 54, 2626, 114951, 692520, 3366314, 3366314, 692520
OFFSET
1,2
COMMENTS
Table starts
..1....2.......3.........4............7............10............15
..2....5......14........24...........77...........182...........397
..3...14......77.......235.........1381..........5566.........21413
..4...24.....235......1304........13648.........98837........692520
..7...77....1381.....13648.......257243.......3366314......43820839
.10..182....5566.....98837......3366314......80283637....1935005419
.15..397...21413....692520.....43820839....1935005419...85908009949
.24.1164..114951...6686074....766539340...62076655091.5128168982319
.35.2626..447479..47001423...9754760605.1450984782112
.54.6439.1942846.368795251.139442821024
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 15]
EXAMPLE
Some solutions for n=4 k=4
..2..1..1..2....2..2..2..2....2..1..2..1....2..2..2..1....2..2..2..1
..3..1..3..3....3..3..0..0....3..3..0..1....3..3..0..1....3..3..0..1
..2..0..0..1....2..2..0..0....2..2..0..0....2..2..2..0....2..2..0..0
..3..3..2..2....3..1..0..2....3..3..0..0....3..3..0..0....3..1..0..3
CROSSREFS
Column 1 is A159288
Sequence in context: A196729 A197069 A197450 * A303682 A304133 A303808
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 04 2014
STATUS
approved