login
A240376
T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4
6
2, 3, 3, 4, 11, 4, 7, 21, 21, 7, 10, 67, 75, 67, 10, 15, 155, 450, 450, 155, 15, 24, 353, 1729, 5161, 1729, 353, 24, 35, 998, 7233, 36398, 36398, 7233, 998, 35, 54, 2256, 36148, 271764, 486179, 271764, 36148, 2256, 54, 83, 5639, 139855, 2492182, 6436979
OFFSET
1,1
COMMENTS
Table starts
..2.....3.......4..........7...........10............15.............24
..3....11......21.........67..........155...........353............998
..4....21......75........450.........1729..........7233..........36148
..7....67.....450.......5161........36398........271764........2492182
.10...155....1729......36398.......486179.......6436979......110122847
.15...353....7233.....271764......6436979.....169838571.....5145071133
.24...998...36148....2492182....110122847....5145071133...296413962369
.35..2256..139855...17380978...1403151574..121626491919.12947745036751
.54..5639..645733..143489019..20729739995.3384817934297
.83.14624.2919837.1182292032.314460587672
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 15] for n>17
EXAMPLE
Some solutions for n=4 k=4
..3..2..3..3....3..3..2..3....2..2..3..2....3..3..2..3....3..2..3..3
..2..0..1..2....3..2..0..3....2..1..1..0....3..1..2..1....2..1..1..2
..3..1..2..1....2..0..2..0....3..1..2..1....2..2..2..2....3..3..2..0
..2..1..1..2....3..1..0..2....2..0..2..2....2..0..0..0....2..1..2..0
CROSSREFS
Column 1 is A159288(n+1)
Sequence in context: A293984 A207608 A290818 * A118963 A127641 A328730
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 04 2014
STATUS
approved