login
A240315
Triangular array read by rows: T(n,k) is the number of compositions of n into exactly k parts in which no part is unique (each part occurs at least twice).
1
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 6, 0, 1, 0, 0, 0, 0, 0, 10, 0, 1, 0, 0, 1, 0, 7, 10, 15, 0, 1, 0, 0, 0, 1, 0, 10, 20, 21, 0, 1, 0, 0, 1, 0, 12, 1, 30, 35, 28, 0, 1, 0, 0, 0, 0, 0, 20, 0, 56, 56, 36, 0, 1, 0, 0, 1, 1, 13, 10, 126, 21, 98, 84, 45, 0, 1
OFFSET
0,26
COMMENTS
Row sums = A240085.
REFERENCES
S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009 page 87.
LINKS
FORMULA
Product_{i>=1} exp(x^i*y) - x^i*y = Sum_{k>=0} A_k(x)*y^k/k!, where A_k(x) is the o.g.f. for the number of compositions of n into k parts in which no part is unique. In other words, A_k(x) is the o.g.f. for column k.
EXAMPLE
Triangle begins:
1;
0, 0;
0, 0, 1;
0, 0, 0, 1;
0, 0, 1, 0, 1;
0, 0, 0, 0, 0, 1;
0, 0, 1, 1, 6, 0, 1;
0, 0, 0, 0, 0, 10, 0, 1;
0, 0, 1, 0, 7, 10, 15, 0, 1;
0, 0, 0, 1, 0, 10, 20, 21, 0, 1;
0, 0, 1, 0, 12, 1, 30, 35, 28, 0, 1;
0, 0, 0, 0, 0, 20, 0, 56, 56, 36, 0, 1;
0, 0, 1, 1, 13, 10, 126, 21, 98, 84, 45, 0, 1;
...
T(8,4) = 7 because we have: 3+3+1+1, 3+1+3+1, 3+1+1+3, 1+3+3+1, 1+3+1+3, 1+1+3+3, 2+2+2+2.
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, t!, `if`(i<1, 0,
expand(b(n, i-1, t)+add(x^j*b(n-i*j, i-1, t+j)/j!, j=2..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
seq(T(n), n=0..14); # Alois P. Heinz, Apr 03 2014
MATHEMATICA
nn=10; Table[Take[Transpose[Range[0, nn]!CoefficientList[Series[ Product[Exp[x^i y]-x^i y, {i, 1, nn}], {y, 0, nn}], {y, x}]], nn+1][[j, Range[1, j]]], {j, 1, nn}]//Grid
CROSSREFS
Sequence in context: A293568 A192072 A060297 * A339431 A256041 A137378
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Apr 03 2014
STATUS
approved