login
Number of partitions p of n such that (maximal multiplicity of the parts of p) < (maximal part of p).
5

%I #6 Dec 25 2023 17:37:53

%S 0,0,1,2,2,4,6,10,14,19,27,37,50,69,92,123,161,213,273,355,453,580,

%T 734,931,1168,1468,1830,2279,2821,3490,4292,5275,6450,7878,9584,11645,

%U 14091,17039,20529,24703,29640,35520,42447,50669,60329,71743,85131,100892

%N Number of partitions p of n such that (maximal multiplicity of the parts of p) < (maximal part of p).

%F a(n) = A240311(n) - A240312(n) for n >= 0.

%F a(n) + A240312(n) + A240314(n) = A000041(n) for n >= 0.

%e a(6) counts these 6 partitions: 6, 51, 42, 411, 33, 321.

%t z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *)

%t Table[Count[f[n], p_ /; m[p] < Max[p]], {n, 0, z}] (* A240310 *)

%t Table[Count[f[n], p_ /; m[p] <= Max[p]], {n, 0, z}] (* A240311 *)

%t Table[Count[f[n], p_ /; m[p] == Max[p]], {n, 0, z}] (* A240312 *)

%t Table[Count[f[n], p_ /; m[p] >= Max[p]], {n, 0, z}] (* A240313 *)

%t Table[Count[f[n], p_ /; m[p] > Max[p]], {n, 0, z}] (* A240314*)

%Y Cf. A240311, A240312, A240313, A240314, A000041.

%K nonn,easy

%O 0,4

%A _Clark Kimberling_, Apr 05 2014