login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240266 Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4. 1

%I

%S 4,7,14,36,72,170,411,879,2106,4874,10808,25648,58383,132428,310199,

%T 704308,1615735,3746472,8529529,19647966,45277950,103456016,238430432,

%U 547803553,1255188579,2890336834,6633676274,15225374578,35023723614

%N Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

%H R. H. Hardin, <a href="/A240266/b240266.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-2) + 10*a(n-3) - a(n-4) - 5*a(n-5) - 15*a(n-6) + a(n-7) + 4*a(n-8) + 2*a(n-9) + 10*a(n-10) + 5*a(n-11) - 6*a(n-13).

%F Empirical g.f.: x*(1 + x)*(4 + 3*x + 3*x^2 - 21*x^3 - x^4 - 14*x^5 + 30*x^6 - 4*x^7 + 27*x^8 - x^9 + 2*x^10 - 12*x^11) / (1 - 2*x^2 - 10*x^3 + x^4 + 5*x^5 + 15*x^6 - x^7 - 4*x^8 - 2*x^9 - 10*x^10 - 5*x^11 + 6*x^13). - _Colin Barker_, Oct 27 2018

%e Some solutions for n=4:

%e ..3..2....3..2....3..2....3..0....2..3....3..2....3..0....2..0....2..3....3..2

%e ..3..1....2..1....3..2....3..2....2..1....2..1....2..3....2..0....2..1....3..2

%e ..2..1....3..2....2..3....2..1....3..0....3..1....3..1....3..2....3..2....2..3

%e ..2..0....3..1....3..1....2..1....2..3....2..3....3..2....2..1....3..2....3..2

%Y Column 2 of A240271.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 03 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 00:40 EST 2020. Contains 331030 sequences. (Running on oeis4.)