%I
%S 3,6,6,14,0,14,32,8,0,32,72,40,16,0,72,164,152,162,44,0,164,372,540,
%T 688,536,122,0,372,844,1578,3964,3530,2152,368,0,844,1916,5912,16600,
%U 33216,17476,8564,1058,0,1916,4348,18528,110134,189430,246458,96752,29708,3088
%N T(n,k)=Number of nXk 0..3 arrays with no element equal to the sum of elements to its left or the sum of the elements above it or the sum of the elements diagonally to its northwest or the sum of the elements antidiagonally to its northeast, modulo 4
%C Table starts
%C ....3.6....14......32.......72........164........372.........844........1916
%C ....6.0.....8......40......152........540.......1578........5912.......18528
%C ...14.0....16.....162......688.......3964......16600......110134......492060
%C ...32.0....44.....536.....3530......33216.....189430.....2166204....14671432
%C ...72.0...122....2152....17476.....246458....2077950....38186418...396423206
%C ..164.0...368....8564....96752....2043488...26986182...807290260.13612747250
%C ..372.0..1058...29708...508444...16426440..326181996.16596832788
%C ..844.0..3088..111370..2779754..143288058.4661555368
%C .1916.0..8534..400694.15042466.1177286938
%C .4348.0.24012.1443716.82159256
%H R. H. Hardin, <a href="/A240250/b240250.txt">Table of n, a(n) for n = 1..109</a>
%F Empirical for column k:
%F k=1: a(n) = a(n1) +2*a(n2) +2*a(n3)
%F k=2: a(n) = a(n1) for n>2
%F Empirical for row n:
%F n=1: a(n) = a(n1) +2*a(n2) +2*a(n3)
%F n=2: [order 25]
%e Some solutions for n=4 k=4
%e ..2..3..2..1....2..3..2..1....1..3..3..2....2..1..1..1....1..3..3..2
%e ..1..0..0..3....1..0..0..3....2..0..0..1....3..0..2..2....2..0..1..1
%e ..1..2..0..2....1..2..1..1....1..0..0..2....2..0..0..1....1..0..2..1
%e ..1..0..0..3....2..3..0..2....1..2..0..2....2..3..2..1....1..0..3..1
%Y Row and column 1 are A238768
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Apr 03 2014
