login
A240239
a(n) is one-half of the integer approximated by A135952(n)/A240238(n).
2
1, 1, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 9, 1, 1, 3, 1, 1, 1, 9, 3, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 30, 3, 2, 3, 39, 1, 1, 1, 6, 3, 34, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 9, 1, 1, 1, 2, 1, 37, 3, 9, 6, 1, 8, 1, 1, 2, 1, 3, 2, 10, 1, 1, 11, 19, 3, 1, 1, 1, 1, 2, 1, 1, 7, 1, 47, 3, 3, 1, 1, 2, 1, 1
OFFSET
1,3
COMMENTS
The integer approximation can be made exact by first adding 1 to A135952(n) where a(n) is odd, or subtracting 1 from A135952(n) where a(n) is even, before dividing by A240238(n).
Conjecture: a(n) never ends with the digit 5.
LINKS
Hans Havermann, Magic multipliers
EXAMPLE
(A135952(1)+1)/A240238(1) = (37+1)/19 = 2, so a(1) is 2/2 = 1.
(A135952(2)+1)/A240238(2) = (73+1)/37 = 2, so a(2) is 2/2 = 1.
(A135952(3)+1)/A240238(3) = (113+1)/19 = 6, so a(3) is 6/2 = 3.
(A135952(4)-1)/A240238(4) = (149-1)/37 = 4, so a(4) is 4/2 = 2.
CROSSREFS
Sequence in context: A292068 A350942 A140056 * A247044 A083663 A085427
KEYWORD
nonn
AUTHOR
Hans Havermann, Apr 02 2014
STATUS
approved