This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240159 Triangle read by rows: T(n,k) = number of trees with n vertices and k segments (n >= 2; 1 <= k <= n-1). 0
 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 1, 0, 3, 2, 3, 2, 1, 0, 4, 3, 7, 4, 4, 1, 0, 5, 5, 12, 10, 9, 5, 1, 0, 7, 6, 22, 20, 25, 15, 10, 1, 0, 8, 9, 34, 38, 54, 46, 31, 14, 1, 0, 10, 11, 53, 65, 114, 111, 103, 57, 26, 1, 0, 12, 15, 76, 108, 212, 250, 267, 204, 114, 42, 1, 0, 14, 18, 110, 167, 383, 502, 644, 583, 440, 219, 78 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,13 COMMENTS A segment of a tree is a path-subtree whose terminal vertices are branching or pendent vertices of the tree. A pendent vertex is a vertex of degree 1; a branching vertex is a vertex of degree >=3. The author has no formula for obtaining the terms of the sequence. The first Maple program yields the number of segments of a tree identified by the Matula number of any of its associated rooted trees. The second program, making use of the set M of M-indices of the trees with n vertices (given in A235111 for n<=12), yields row n of the triangle. The M-index of a tree is the smallest of the Matula numbers of its associated rooted trees. In the Maple program given below we have n=7. LINKS FORMULA Sum of entries in row n = A000055(n) = number of trees with n vertices. T(n,n-1) = A000014(n) = number of reduced trees with n vertices. EXAMPLE Row 4 is 1, 0, 1. Indeed, there are 2 trees with 4 vertices: the path P_4 having 1 segment and the star S_4 having 3 segments. Triangle begins: 1; 1,0; 1,0,1; 1,0,2,1,2; 1,0,3,2,3,2; MAPLE with(numtheory): seg := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow; n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 and bigomega(pi(n)) = 1 then seg(pi(n)) elif bigomega(n) = 1 and bigomega(pi(n)) = 2 then seg(pi(n))+2 elif bigomega(n) = 1 then seg(pi(n))+1 elif bigomega(r(n)) = 1 and bigomega(s(n)) = 1 then seg(r(n))+seg(s(n))-1 elif bigomega(r(n)) = 1 and bigomega(s(n)) = 2 then seg(r(n))+seg(s(n))+1 elif bigomega(r(n)) = 2 and bigomega(s(n)) = 1 then seg(r(n))+seg(s(n))+1 elif bigomega(r(n)) = 2 and bigomega(s(n)) = 2 then seg(r(n))+seg(s(n))+2 elif bigomega(r(n)) = 1 and 2 < bigomega(s(n)) then seg(r(n))+seg(s(n)) elif 2 < bigomega(r(n)) and bigomega(s(n)) = 1 then seg(r(n))+seg(s(n)) elif bigomega(r(n)) = 2 and 2 < bigomega(s(n)) then seg(r(n))+seg(s(n))+1 elif 2 < bigomega(r(n)) and bigomega(s(n)) = 2 then seg(r(n))+seg(s(n))+1 else seg(r(n))+seg(s(n)) end if end proc: M := {25, 27, 30, 35, 36, 40, 42, 48, 49, 56, 64}: P := sort(add(x^seg(M[i]), i = 1 .. nops(M))): seq(coeff(P, x, j), j = 1 .. 6); CROSSREFS Cf. A000014, A000055, A235111. Sequence in context: A079532 A328176 A191312 * A309447 A320312 A269942 Adjacent sequences:  A240156 A240157 A240158 * A240160 A240161 A240162 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Apr 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 17:37 EST 2019. Contains 329970 sequences. (Running on oeis4.)