login
A240153
T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4
12
2, 3, 3, 4, 5, 4, 7, 8, 11, 7, 10, 19, 20, 25, 10, 15, 36, 107, 67, 62, 15, 24, 57, 186, 676, 254, 144, 24, 35, 120, 450, 1328, 3993, 825, 329, 35, 54, 218, 1641, 5701, 11742, 22412, 2667, 775, 54, 83, 377, 2788, 24419, 88214, 108201, 131005, 8652, 1781, 83, 124, 758
OFFSET
1,1
COMMENTS
Table starts
..2....3.....4........7.........10..........15..........24.........35
..3....5.....8.......19.........36..........57.........120........218
..4...11....20......107........186.........450........1641.......2788
..7...25....67......676.......1328........5701.......24419......52676
.10...62...254.....3993......11742.......88214......536744....1652584
.15..144...825....22412.....108201.....1608415....12812998...70360014
.24..329..2667...131005....1056699....30542203...417799464.3795213209
.35..775..8652...731518...10526838...584983851.14482686630
.54.1781.27929..4144347..107361960.11643589675
.83.4150.91436.23263202.1116331018
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 34] for n>36
Empirical for row n:
n=1: a(n) = a(n-2) +2*a(n-3)
n=2: [order 17] for n>19
EXAMPLE
Some solutions for n=4 k=4
..2..2..3..2....2..2..3..3....2..2..3..3....2..2..3..3....2..2..3..3
..0..2..1..1....0..2..2..3....0..2..1..1....0..0..2..2....0..2..1..1
..0..2..2..3....2..0..0..2....2..2..3..3....2..0..1..3....0..2..2..2
..0..0..2..2....3..2..3..2....3..1..2..1....3..1..2..2....0..2..0..2
CROSSREFS
Row and column 1 are A159288(n+1)
Sequence in context: A374131 A357431 A361383 * A241435 A349320 A078338
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 02 2014
STATUS
approved