

A240134


Numerator of (n1) * ceiling(n/2) / n.


1



0, 1, 4, 3, 12, 5, 24, 7, 40, 9, 60, 11, 84, 13, 112, 15, 144, 17, 180, 19, 220, 21, 264, 23, 312, 25, 364, 27, 420, 29, 480, 31, 544, 33, 612, 35, 684, 37, 760, 39, 840, 41, 924, 43, 1012, 45, 1104, 47, 1200, 49, 1300, 51, 1404, 53, 1512, 55, 1624, 57, 1740, 59, 1860, 61, 1984, 63, 2112, 65
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

A046092 Union A005408.


LINKS

Table of n, a(n) for n=1..66.
Index entries for linear recurrences with constant coefficients, signature (0,3,0,3,0,1).


FORMULA

a(2n) = 2n1. a(2n1) = 2n(n1).
a(n) = 3*a(n2)3*a(n4)+a(n6). G.f.: x^2*(x^44*x1) / ((x1)^3*(x+1)^3).  Colin Barker, Apr 02 2014
a(n) = n  1 + (2*floor((n+2)/2)^2  2*floor((n+2)/2)  n + 1) * (n mod 2).  Wesley Ivan Hurt, Apr 02 2014


MAPLE

A240134:=n>numer( (n1)*ceil(n/2) / n ); seq(A240134(n), n=1..100);


MATHEMATICA

Table[Numerator[(n  1) Ceiling[n/2] / n], {n, 100}]


PROG

(PARI) concat(0, Vec(x^2*(x^44*x1)/((x1)^3*(x+1)^3) + O(x^100))) \\ Colin Barker, Apr 02 2014


CROSSREFS

Bisections: A046092 and A005408.
Sequence in context: A121844 A091512 A106285 * A193800 A061727 A327916
Adjacent sequences: A240131 A240132 A240133 * A240135 A240136 A240137


KEYWORD

nonn,easy


AUTHOR

Wesley Ivan Hurt, Apr 02 2014


STATUS

approved



