This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240130 Least prime of the form prime(n)^2 + k^2, or 0 if none. 9
 5, 13, 29, 53, 137, 173, 293, 397, 593, 857, 977, 1373, 1697, 1913, 2213, 2909, 3517, 3821, 4493, 5077, 5333, 6257, 7213, 7937, 9413, 10301, 10613, 11549, 11897, 13093, 16193, 17417, 18773, 19421, 22397, 22817, 24749, 26573, 27893, 30029 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The positive terms form a subsequence of A185086 = Fouvry-Iwaniec primes = primes of the form prime^2 + integer^2. The values of k are A240131. Is a(n) < a(n+1) for all n? (I have checked it for n <= 10^6.) Note that A240131 is far from being monotone. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Stephan Baier and Liangyi Zhao, On Primes Represented by Quadratic Polynomials, Anatomy of Integers, CRM Proc. & Lecture Notes, Vol. 46, Amer. Math. Soc. 2008, pp. 169 - 166. Étienne Fouvry and Henryk Iwaniec, Gaussian primes, Acta Arithmetica 79:3 (1997), pp. 249-287. E.W. Weisstein, Fermat's 4n+1 Theorem, MathWorld. Wikipedia, Bunyakovsky's conjecture FORMULA a(n) == 1 (mod 4) if a(n) > 0. a(n) > 0 if Bunyakovsky's conjecture is true. a(n) <> a(m) if n <> m and a(n) > 0, by uniqueness in Fermat's 4n+1 Theorem. a(n) = prime(n)^2 + A240131(n)^2 if a(n) > 0. EXAMPLE Prime(2) = 3 and 3^2 + 1^2 = 10 is not prime but 3^2 + 2^2 = 13 is prime, so a(2) = 13. MAPLE g:= proc(p) local k; for k from 2 by 2 do if isprime(p^2 + k^2) then return p^2+k^2 fi od end proc: g(2):= 5: seq(g(ithprime(i)), i=1..1000); # Robert Israel, Nov 04 2015 MATHEMATICA Table[First[Select[Prime[n]^2 + Range[20]^2, PrimeQ]], {n, 40}] PROG (PARI) a(n) = {p = prime(n); k = 1 - p%2; inc = 2; while (!isprime(q=p^2+k^2), k += inc); q; } \\ Michel Marcus, Nov 04 2015 CROSSREFS Cf. A002144, A185086. Sequence in context: A106931 A078370 A247903 * A005473 A086732 A162329 Adjacent sequences:  A240127 A240128 A240129 * A240131 A240132 A240133 KEYWORD nonn AUTHOR Jonathan Sondow, Apr 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 17:12 EST 2019. Contains 320222 sequences. (Running on oeis4.)