login
A240118
Schoenheim lower bound L(n,5,3).
5
1, 4, 5, 7, 11, 14, 18, 27, 32, 37, 54, 61, 68, 94, 103, 116, 147, 163, 180, 221, 240, 260, 319, 342, 366, 438, 465, 500, 581, 619, 658, 756, 800, 844, 968, 1016, 1066, 1210, 1265, 1329, 1485, 1555, 1627, 1805, 1882, 1960, 2173, 2257, 2343, 2582, 2673, 2778
OFFSET
5,2
LINKS
D. Gordon, G. Kuperberg and O. Patashnik, New constructions for covering designs, arXiv:math/9502238 [math.CO], 1995.
MATHEMATICA
schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb];
Table[schoenheim[n, 5, 3], {n, 5, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
PROG
(PARI) schoenheim(n, k, t) = {
my(lb = 1);
n += 1-t; k += 1-t;
while(t>0,
lb = ceil((lb*n)/k);
t--; n++; k++
);
lb
}
s=[]; for(n=5, 100, s=concat(s, schoenheim(n, 5, 3))); s
KEYWORD
nonn
AUTHOR
Colin Barker, Apr 01 2014
STATUS
approved