login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240076 Number of partitions of n such that m(greatest part) < m(1), where m = multiplicity. 5
0, 0, 0, 0, 1, 2, 3, 6, 8, 13, 18, 27, 35, 52, 67, 93, 121, 164, 209, 279, 353, 461, 582, 748, 935, 1191, 1480, 1861, 2302, 2870, 3526, 4365, 5335, 6554, 7976, 9736, 11789, 14316, 17259, 20844, 25032, 30092, 35992, 43086, 51347, 61215, 72710, 86361, 102235 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..48.

FORMULA

a(n) + A240078(n) + A240080(n) = A000041 for n >= 0.

EXAMPLE

a(7) counts these 6 partitions:  511, 4111, 3211, 31111, 22111, 211111.

MATHEMATICA

z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, Max[p]] < Count[p, 1]], {n, 0, z}]  (* A240076 *)

t2 = Table[Count[f[n], p_ /; Count[p, Max[p]] <= Count[p, 1]], {n, 0, z}] (* A240077 *)

t3 = Table[Count[f[n], p_ /; Count[p, Max[p]] == Count[p, 1]], {n, 0, z}] (* A240078 *)

t4 = Table[Count[f[n], p_ /; Count[p, Max[p]] > Count[p, 1]], {n, 0, z}] (* A117995 *)

t5 = Table[Count[f[n], p_ /; Count[p, Max[p]] >= Count[p, 1]], {n, 0, z}] (* A240080 *)

CROSSREFS

Cf. A240077, A240078, A117995, A240080.

Sequence in context: A022943 A068491 A239952 * A266771 A295342 A226635

Adjacent sequences:  A240073 A240074 A240075 * A240077 A240078 A240079

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 04:54 EDT 2020. Contains 337295 sequences. (Running on oeis4.)