|
|
A240041
|
|
Number of nX2 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4
|
|
1
|
|
|
2, 4, 10, 22, 50, 119, 276, 637, 1473, 3355, 7682, 17497, 39777, 90406, 205111, 465359, 1054871, 2390302, 5415591, 12265608, 27777095, 62895884, 142401878, 322392952, 729835421, 1652150714, 3739914222, 8465684665, 19162662378, 43375394510
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 2 of A240046
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 3*a(n-2) +10*a(n-3) +3*a(n-4) -12*a(n-5) -46*a(n-6) -36*a(n-7) +12*a(n-8) +107*a(n-9) +87*a(n-10) +2*a(n-11) -145*a(n-12) -138*a(n-13) -48*a(n-14) +147*a(n-15) +185*a(n-16) +89*a(n-17) -94*a(n-18) -210*a(n-19) -111*a(n-20) +40*a(n-21) +176*a(n-22) +85*a(n-23) +30*a(n-24) -77*a(n-25) -47*a(n-26) -57*a(n-27) +14*a(n-29) +21*a(n-30) +14*a(n-31) -3*a(n-32) +2*a(n-33) -5*a(n-34) +a(n-35) +2*a(n-36) +a(n-37) -a(n-38) for n>40
|
|
EXAMPLE
|
All solutions for n=3
..3..2....3..2....2..3....3..2....2..3....3..2....2..3....3..2....3..2....2..3
..2..0....1..0....3..0....1..0....1..0....1..0....3..0....2..0....2..0....3..0
..2..0....2..0....2..0....2..3....2..0....3..0....3..0....2..3....3..0....3..2
|
|
CROSSREFS
|
Sequence in context: A275445 A075560 A078040 * A164990 A348009 A121285
Adjacent sequences: A240038 A240039 A240040 * A240042 A240043 A240044
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Mar 31 2014
|
|
STATUS
|
approved
|
|
|
|