login
A240036
Number of nX5 0..2 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 3
1
8, 10, 42, 52, 154, 178, 494, 600, 1606, 2014, 5262, 6690, 17464, 22360, 58342, 74736, 194784, 249738, 650892, 834326, 2174114, 2786028, 7260062, 9299282, 24230362, 31026484, 80832010, 103476740, 269526292, 344976344, 898349934, 1149695244
OFFSET
1,1
COMMENTS
Column 5 of A240039
LINKS
FORMULA
Empirical: a(n) = 24*a(n-2) -254*a(n-4) +1540*a(n-6) -5743*a(n-8) +12572*a(n-10) -9844*a(n-12) -29846*a(n-14) +118468*a(n-16) -204106*a(n-18) +182686*a(n-20) +18168*a(n-22) -371269*a(n-24) +732749*a(n-26) -915915*a(n-28) +882644*a(n-30) -769800*a(n-32) +661777*a(n-34) -565432*a(n-36) +534609*a(n-38) -520131*a(n-40) +330402*a(n-42) -7073*a(n-44) -202359*a(n-46) +322607*a(n-48) -341400*a(n-50) +75883*a(n-52) +180888*a(n-54) -214325*a(n-56) +211488*a(n-58) -133525*a(n-60) +39168*a(n-62) -41213*a(n-64) +32114*a(n-66) +51*a(n-68) -15949*a(n-70) +5028*a(n-72) +5318*a(n-74) +1581*a(n-76) -642*a(n-78) +392*a(n-80) -233*a(n-82) -14*a(n-84) +4*a(n-86) for n>89
EXAMPLE
Some solutions for n=3
..1..2..1..2..1....1..2..1..2..1....1..2..1..2..1....1..2..1..2..1
..2..0..0..0..0....2..0..0..0..0....2..0..0..0..0....2..0..0..0..0
..1..0..0..0..2....1..0..2..1..0....1..0..0..0..0....2..1..2..0..0
CROSSREFS
Sequence in context: A303527 A367893 A325999 * A091632 A060768 A218464
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 31 2014
STATUS
approved