login
Bisection of A055505.
2

%I #15 May 08 2024 02:29:26

%S 1,11,2447,238043,559440199,29128857391,9447595434410813,

%T 225037938358318573,3651003047854884043877,

%U 104388909491649724435759747,1372557084260440289321615059133,107881945709178295095123859185817,98682616643700175634367947900986085893

%N Bisection of A055505.

%C Based on a very good approximation to e.

%H Harlan J. Brothers and John A. Knox,, <a href="http://dx.doi.org/10.1007/BF03025225">New closed-form approximations to the logarithmic constant e</a>, Math. Intelligencer, 20 (1998), 25-29. MR1646709 (2000c:11209).

%H Chao-Ping Chen and Junesang Choi, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.121.04.338">An Asymptotic Formula for (1+1/x)^x Based on the Partition Function</a>, Amer. Math. Monthly 121 (2014), no. 4, 338-343. MR3183017.

%H John A. Knox and Harlan J. Brothers, <a href="http://harlanjbrothers.com/docs/cmj_paper1.pdf">Novel series-based approximations to e</a>, College Math. J. 30 (1999), no. 4, 269-275. MR1717867 (2000i:11198).

%e Numerators of the fractions 1, 11/24, 2447/5760, 238043/580608, ... (see A055505/A055535).

%Y Cf. A055505/A055535, A239898 (denominators).

%K nonn,frac

%O 0,2

%A _N. J. A. Sloane_, Apr 05 2014

%E More terms from _Amiram Eldar_, May 08 2024