login
Least positive integer k <= n with pi(pi(k*n)) a square, or 0 if such a number k does not exist, where pi(x) denotes the number of primes not exceeding x.
2

%I #7 Mar 28 2014 22:41:05

%S 1,1,1,1,4,3,3,3,2,2,2,2,2,2,2,6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,

%T 3,3,7,7,7,13,6,2,2,2,2,2,2,2,2,2,2,2,2,2,5,16,9,9,9,9,4,4,4,4,4,4,4,

%U 4,4,13,70,20,7,7,7,7,7,7,63,11

%N Least positive integer k <= n with pi(pi(k*n)) a square, or 0 if such a number k does not exist, where pi(x) denotes the number of primes not exceeding x.

%C According to part (i) of the conjecture in A238902, a(n) should be always positive. We have verified this for all n = 1, ..., 2*10^5.

%H Zhi-Wei Sun, <a href="/A239884/b239884.txt">Table of n, a(n) for n = 1..10000</a>

%H Zhi-Wei Sun, <a href="/A239884/a239884.txt">List of (n, a(n), sqrt(pi(pi(a(n)*n))) for n = 1, ..., 2*10^5</a>

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641, 2014.

%e a(5) = 4 since pi(pi(4*5)) = pi(8) = 2^2, but none of pi(pi(1*5)) = pi(3) = 2, pi(pi(2*5)) = pi(4) = 2 and pi(pi(3*5)) = pi(6) = 3 is a square.

%e a(192969) = 83187 with pi(pi(83187*192969)) = pi(715034817) = 6082^2.

%t SQ[n_]:=IntegerQ[Sqrt[n]]

%t f[n_]:=PrimePi[PrimePi[n]]

%t Do[Do[If[SQ[f[k*n]],Print[n," ",k];Goto[aa]],{k,1,n}];

%t Print[n," ",0];Label[aa];Continue,{n,1,80}]

%Y Cf. A000040, A000290, A000720, A238902.

%K nonn

%O 1,5

%A _Zhi-Wei Sun_, Mar 28 2014