login
Sum of sigma(i) mod i for i from 1 to n.
2

%I #17 Sep 08 2022 08:46:07

%S 0,1,2,5,6,6,7,14,18,26,27,31,32,42,51,66,67,70,71,73,84,98,99,111,

%T 117,133,146,146,147,159,160,191,206,226,239,258,259,281,298,308,309,

%U 321,322,362,395,421,422,450,458,501,522,568,569,581,598,606,629,661

%N Sum of sigma(i) mod i for i from 1 to n.

%H Jaroslav Krizek, <a href="/A239868/b239868.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = Sum_{k = 1...n} sigma(k) mod k = Sum_{k = 1...n} A054024(k).

%F a(n) = a(n - 1) for multiply-perfect numbers n (A007691).

%F a(p) = a(p - 1) + 1 for prime p.

%e a(3) = 2 because sigma(3) = 4 = 1 mod 3 and a(2) + 1 = 2.

%e a(4) = 5 because sigma(4) = 7 = 3 mod 4 and a(3) + 3 = 5.

%e a(5) = 6 because sigma(5) = 6 = 1 mod 5 and a(4) + 1 = 6.

%t Table[Sum[Mod[DivisorSigma[1, i], i], {i, n}], {n, 60}] (* _Alonso del Arte_, Mar 30 2014 *)

%t Accumulate[Table[Mod[DivisorSigma[1,n],n],{n,60}]] (* _Harvey P. Dale_, Jun 06 2021 *)

%o (Magma) [&+[SumOfDivisors (k) mod k: k in [1..n]]: n in [1..1000]]

%Y Cf. A000203, A054024, A239869 (values of n for which a(n) / n is integer).

%K nonn

%O 1,3

%A _Jaroslav Krizek_, Mar 28 2014