%I #4 Mar 27 2014 09:10:02
%S 2,4,5,10,23,11,24,132,113,25,56,729,1480,582,57,132,3951,18728,17552,
%T 2981,129,312,21602,232272,510748,204779,15266,293,736,118253,2912793,
%U 14544801,13597573,2405330,78188,665,1736,646306,36627126,418324402
%N T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it, modulo 4
%C Table starts
%C ....2.......4.........10............24................56..................132
%C ....5......23........132...........729..............3951................21602
%C ...11.....113.......1480.........18728............232272..............2912793
%C ...25.....582......17552........510748..........14544801............418324402
%C ...57....2981.....204779......13597573.........884977259..........58232200212
%C ..129...15266....2405330.....366379173.......54668820459........8243207656791
%C ..293...78188...28156167....9807771898.....3347474694032.....1154988223050638
%C ..665..400542..330152684..263419973152...205970817822022...162794110794893005
%C .1509.2051667.3868656623.7064275271994.12641836066488239.22871029907841066549
%H R. H. Hardin, <a href="/A239819/b239819.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
%F k=2: [order 10]
%F k=3: [order 35]
%F Empirical for row n:
%F n=1: a(n) = 2*a(n-1) +2*a(n-3)
%F n=2: [order 16]
%F n=3: [order 64]
%e Some solutions for n=3 k=4
%e ..2..0..0..3....3..0..0..0....3..0..2..2....2..3..0..0....3..0..2..2
%e ..1..0..2..2....1..2..0..0....2..0..1..1....1..3..2..0....1..0..2..0
%e ..1..2..0..0....2..1..2..3....3..2..3..3....1..0..0..2....3..0..2..0
%Y Row 1 is A052912
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Mar 27 2014