login
A239819
T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it, modulo 4
15
2, 4, 5, 10, 23, 11, 24, 132, 113, 25, 56, 729, 1480, 582, 57, 132, 3951, 18728, 17552, 2981, 129, 312, 21602, 232272, 510748, 204779, 15266, 293, 736, 118253, 2912793, 14544801, 13597573, 2405330, 78188, 665, 1736, 646306, 36627126, 418324402
OFFSET
1,1
COMMENTS
Table starts
....2.......4.........10............24................56..................132
....5......23........132...........729..............3951................21602
...11.....113.......1480.........18728............232272..............2912793
...25.....582......17552........510748..........14544801............418324402
...57....2981.....204779......13597573.........884977259..........58232200212
..129...15266....2405330.....366379173.......54668820459........8243207656791
..293...78188...28156167....9807771898.....3347474694032.....1154988223050638
..665..400542..330152684..263419973152...205970817822022...162794110794893005
.1509.2051667.3868656623.7064275271994.12641836066488239.22871029907841066549
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
k=2: [order 10]
k=3: [order 35]
Empirical for row n:
n=1: a(n) = 2*a(n-1) +2*a(n-3)
n=2: [order 16]
n=3: [order 64]
EXAMPLE
Some solutions for n=3 k=4
..2..0..0..3....3..0..0..0....3..0..2..2....2..3..0..0....3..0..2..2
..1..0..2..2....1..2..0..0....2..0..1..1....1..3..2..0....1..0..2..0
..1..2..0..0....2..1..2..3....3..2..3..3....1..0..0..2....3..0..2..0
CROSSREFS
Row 1 is A052912
Sequence in context: A018664 A018688 A018733 * A110789 A125952 A337661
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 27 2014
STATUS
approved