This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239791 Number of compositions of n with no consecutive 2's. 2
 1, 1, 2, 4, 7, 14, 28, 54, 105, 205, 399, 777, 1514, 2949, 5744, 11189, 21795, 42454, 82696, 161083, 313772, 611194, 1190540, 2319043, 4517245, 8799105, 17139705, 33386292, 65032887, 126677032, 246753161, 480648477, 936251262, 1823716224, 3552402011, 6919695006, 13478817664, 26255279382, 51142445325 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-1,1). FORMULA G.f.: (1 + x^2)/(1 - (2*x^5/(1-x) + x + x^4 + 2*x^3)) = (x-1)*(1+x^2) / ( -1+2*x-x^2+2*x^3-x^4+x^5 ). Generally, for fixed integer k>=1, the g.f. for the number of compositions with no consecutive k's: (1 + x^k)/(1 - (2*x^(2*k+1)/(1-x) + x^(2*k) + Sum_{j=1..k-1}x^j + Sum{j=k+1..2*k-1}2*x^j)). Another way to write G. Critzer's general g.f. above: 1/((1-2*x)/(1-x) + x^(2*k)/(1+x^k)). - Petros Hadjicostas, Dec 03 2017 EXAMPLE a(5) = 14 because there are 16 compositions of 5 but we don't count 2+2+1 and 1+2+2. MATHEMATICA nn=30; k=2; CoefficientList[Series[(1+x^k)/(1-(2x^(2k+1)/(1-x)+x^(2k)+Sum[x^j, {j, 1, k-1}]+Sum[2x^j, {j, k+1, 2k-1}])), {x, 0, nn}], x] CoefficientList[Series[(1 + x^2)/(1 - (2 x^5/(1 - x) + x + x^4 + 2 x^3)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 29 2014 *) PROG (PARI) Vec( (1 + x^2)/(1 - (2*x^5/(1-x) + x + x^4 + 2*x^3)) + O(x^66) ) \\ Joerg Arndt, Mar 27 2014 CROSSREFS Cf. A000213 (compositions with no consecutive 1's), A003242. Sequence in context: A161713 A018330 A068060 * A251653 A057744 A251708 Adjacent sequences:  A239788 A239789 A239790 * A239792 A239793 A239794 KEYWORD nonn,easy AUTHOR Geoffrey Critzer, Mar 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 13:18 EDT 2019. Contains 321345 sequences. (Running on oeis4.)