login
A239734
Primes p such that 8p+9 and 9p+8 are both prime.
1
11, 29, 71, 79, 151, 211, 251, 401, 419, 461, 541, 599, 601, 659, 881, 1129, 1231, 1381, 1831, 1901, 2309, 2521, 2741, 2851, 2879, 2969, 3011, 3121, 3301, 3319, 3511, 3581, 3719, 3761, 3779, 3851, 4099, 4241, 4561, 4649, 4691, 4969, 5021, 5209, 5531, 5641
OFFSET
1,1
COMMENTS
All of the numbers in this sequence are congruent to either 1 or 9 mod 10.
LINKS
EXAMPLE
11 is prime, 11*8+9 = 97 is prime, and 9*11+8 = 107 is prime. Thus, 11 is a member of this sequence.
MATHEMATICA
Select[Prime[Range[800]], AllTrue[{8#+9, 9#+8}, PrimeQ]&] (* The program uses the function AllTrue from Mathematica version 10 *) (* Harvey P. Dale, Aug 20 2014 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(n) for n in range(5000) if isprime(8*n+9) and isprime(9*n+8) and isprime(n)}
(PARI) s=[]; forprime(p=2, 6000, if(isprime(8*p+9) && isprime(9*p+8), s=concat(s, p))); s \\ Colin Barker, Mar 26 2014
CROSSREFS
Sequence in context: A216296 A099909 A106881 * A106880 A275475 A135064
KEYWORD
nonn,easy
AUTHOR
Derek Orr, Mar 25 2014
STATUS
approved