login
A239718
Primes of the form m = 8^i + 8^j - 1, where i > j >= 0.
1
71, 4159, 32831, 262151, 266239, 294911, 2101247, 18874367, 134479871, 1073741831, 68721573887, 549755813951, 4398046515199, 4398046543871, 4398046773247, 4398063288319, 281474976711167, 281474976743423, 281474978807807, 281474993487871
OFFSET
1,1
COMMENTS
The base-8 representation of a term 8^i + 8^j - 1 has base-8 digital sum = 1 + 7*j == 1 (mod 7).
In base-8 representation the first terms are 107, 10077, 100077, 1000007, 1007777, 1077777, 10007777, 107777777, 1000777777, 10000000007, 1000007777777, 10000000000077, 100000000007777, ...
Numbers m that satisfy m = 8^i + 8^j - 1 with odd i and j are not terms. Example: 33279 = 8^5 + 8^3 - 1 = 3*11093.
LINKS
Hieronymus Fischer, Table of n, a(n) for n = 1..40
EXAMPLE
a(1) = 71, since 71 = 8^2 + 8^1 - 1 is prime.
a(2) = 4159, since 4159 = 8^4 + 8^2 - 1 is prime.
PROG
(Smalltalk)
"Answers an array of the first n terms of A239718.
Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
Usage: n A239718
Answer: #(71 4159 ... ) [a(1) ... a(n)]"
^self primesWhichAreDistinctPowersOf: 8 withOffset: -1
CROSSREFS
Sequence in context: A017734 A263248 A221051 * A279904 A115447 A200960
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Apr 14 2014
STATUS
approved