The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239708 Numbers of the form m = 2^i + 2^j, where i > j >= 0, such that m - 1 is prime. 9
 3, 6, 12, 18, 20, 24, 48, 68, 72, 80, 132, 192, 258, 264, 272, 384, 1032, 1040, 1088, 1152, 1280, 2064, 2112, 4100, 4112, 4128, 4160, 5120, 6144, 8448, 16448, 20480, 32772, 32784, 32832, 33024, 33792, 65538, 65540, 65544, 65552, 65600, 66048, 73728, 81920, 262148, 262152, 262272, 262400, 263168, 266240, 294912, 524352, 528384, 786432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Complement of the disjunction of A079696 with A187813. This means that a number m is a term if and only if b = 2 is the only base for which the base-b digital sum of m is b. LINKS Hieronymus Fischer, Table of n, a(n) for n = 1..250 FORMULA A239703(a(n)) = 1. EXAMPLE a(1) = 3, since 3 = 2^1 + 2^0. a(3) = 12, since 12 = 2^3 + 2^2. PROG (Smalltalk) "Answers the n-th term of A239708.   Usage: n A239708   Answer: a(n)"   | a b i k m p q terms |   terms := OrderedCollection new.   b := 2.   p := 1.   k := 0.   m := 0.   [k < self] whileTrue:          [m := m + 1.          p := b * p.          q := 1.          i := 0.          [i < m and: [k < self]] whileTrue:                    [i := i + 1.                    a := p + q.                    (a - 1) isPrime                         ifTrue:                             [k := k + 1.                             terms add: a].                    q := b * q]].   ^terms at: self ----------------- (Smalltalk) A239708inv   "Answers a kind of inverse of A239708.   Usage: n A239708inv   Answer: max ( k | A239708(k) < n)"   | k |   k := 1.   [k A239708 < self] whileTrue: [k := k + 1].   ^k - 1 CROSSREFS Cf. A239709 - A239720. Cf. A239703, A187813, A079696, A008864. Sequence in context: A288570 A038046 A162845 * A038588 A111041 A079830 Adjacent sequences:  A239705 A239706 A239707 * A239709 A239710 A239711 KEYWORD nonn AUTHOR Hieronymus Fischer, Mar 27 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 10 00:05 EDT 2020. Contains 335570 sequences. (Running on oeis4.)