login
A239670
Expansion of 1/((1-x)*(1-81*x)).
1
1, 82, 6643, 538084, 43584805, 3530369206, 285959905687, 23162752360648, 1876182941212489, 151970818238211610, 12309636277295140411, 997080538460906373292, 80763523615333416236653, 6541845412842006715168894, 529889478440202543928680415
OFFSET
0,2
COMMENTS
Partial sums of 81^n.
FORMULA
G.f.: 1/((1-x)*(1-81*x)).
a(n) = 82*a(n-1) - 81*a(n-2) for n > 1, a(0)=1, a(1)=82.
a(n) = 81*a(n-1) + 1 for n > 0, a(0)=1.
a(n) = A033119(2*n+1).
a(n) = ( 81^(n+1) - 1 ) / 80. [Bruno Berselli, Mar 24 2014]
EXAMPLE
Base 9................Decimal
1...........................1
101........................82
10101....................6643
1010101................538084
101010101............43584805
10101010101........3530369206
1010101010101....285959905687, etc.
MATHEMATICA
CoefficientList[Series[1/((1 - x) (1 - 81 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
PROG
(Magma) [(81^(n+1)-1)/80: n in [0..20]]; // Vincenzo Librandi, Mar 24 2014
CROSSREFS
Cf. A033119.
Sequence in context: A214815 A280959 A252705 * A292423 A097841 A116123
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Mar 23 2014
STATUS
approved