login
A239592
a(n) = (n^4 - n^3 + 4*n^2 + 2)/2.
2
1, 3, 13, 46, 129, 301, 613, 1128, 1921, 3079, 4701, 6898, 9793, 13521, 18229, 24076, 31233, 39883, 50221, 62454, 76801, 93493, 112773, 134896, 160129, 188751, 221053, 257338, 297921, 343129, 393301, 448788, 509953, 577171, 650829, 731326, 819073, 914493
OFFSET
0,2
COMMENTS
Main diagonal of square array A239331.
FORMULA
G.f.: (1 - 2*x + 8*x^2 + x^3 + 4*x^4)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), a(0) = 1, a(1) = 3, a(2) = 13, a(3) = 46, a(4) = 129.
a(n) = A058331(n) + A092364(n).
MATHEMATICA
CoefficientList[Series[(1 - 2 x + 8 x^2 + x^3 + 4 x^4)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
PROG
(PARI) Vec((1-2*x+8*x^2+x^3+4*x^4)/(1-x)^5 + O(x^100)) \\ Colin Barker, Mar 22 2014
(Magma) [(n^4-n^3+4*n^2 + 2)/2: n in [0..40]]; // Vincenzo Librandi, Mar 23 2014
CROSSREFS
Cf. A239331.
Sequence in context: A232231 A121136 A350175 * A017943 A220117 A089930
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Mar 22 2014
STATUS
approved