%I
%S 128,1584,98304,3785280,165336096,6976042240,297124637920,
%T 12622717987696,536625406147360,22809020631128424,969537615294392640,
%U 41211319597204417184,1751741668044306860648,74460018786142833463792
%N Number of (6+1)X(n+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order
%C Row 6 of A239537
%H R. H. Hardin, <a href="/A239540/b239540.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A239540/a239540.txt">Empirical recurrence of order 85</a>
%F Empirical recurrence of order 85 (see link above)
%e Some solutions for n=3
%e ..0..1..2..1....0..1..1..0....0..1..1..2....0..1..0..2....0..1..0..2
%e ..0..1..2..1....0..1..1..0....0..1..1..2....0..1..0..2....0..1..0..2
%e ..0..2..2..1....1..2..2..0....2..1..1..2....2..0..0..2....1..2..1..2
%e ..1..2..2..0....1..2..2..1....2..1..0..1....2..0..0..2....1..2..1..2
%e ..1..2..2..0....1..2..2..1....0..2..0..1....2..0..0..1....0..2..1..0
%e ..0..1..2..0....1..0..0..2....0..2..2..1....1..0..0..1....0..2..2..0
%e ..0..1..2..0....1..0..0..2....0..2..2..1....1..0..0..1....0..2..2..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 21 2014
