login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239514 Number of partitions p of n such that if h = max(p) - min(p), then h is an (h,0)-separator of p; see Comments. 4
0, 0, 0, 0, 1, 1, 0, 2, 2, 3, 2, 4, 2, 7, 6, 7, 6, 10, 7, 14, 12, 18, 12, 22, 18, 23, 23, 31, 29, 42, 33, 45, 42, 54, 49, 68, 62, 78, 76, 95, 87, 110, 102, 124, 128, 150, 141, 178, 174, 203, 203, 237, 228, 272, 269, 308, 318, 360, 356, 422, 420, 472, 482 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Suppose that p is a partition of n into 2 or more parts and that h is a part of p.  Then p is (h,0)-separable if there is an ordering x, h, x, h, ..., h, x of the parts of p, where each x represents any part of p except h.  Here, the number of h's on the ends of the ordering is 0.  Similarly, p is (h,1)-separable if there is an ordering x, h, x, h, ... , x, h, where the number of h's on the ends is 1; next, p is (h,2)-separable if there is an ordering h, x, h, ... , x, h.  Finally, p is h-separable if it is (h,i)-separable for i = 0,1,2.

LINKS

Table of n, a(n) for n=1..63.

FORMULA

a(12) counts these partitions:  615, 642, 43131, 3121212.

MATHEMATICA

z = 75; Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p] - 1], {n, 1, z}]  (* A239510 *)

Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p] - 1], {n, 1, z}]  (* A239511 *)

Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p] - 1], {n, 1, z}]  (* A237828 *)

Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Length[p]] == Length[p] - 1], {n, 1, z}]  (* A239513 *)

Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p] - 1], {n, 1, z}] (* A239514 *)

CROSSREFS

Cf. A239510, A239511, A237828, A239513, A239482.

Sequence in context: A318470 A175501 A144370 * A304464 A087050 A263323

Adjacent sequences:  A239511 A239512 A239513 * A239515 A239516 A239517

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 14:26 EST 2020. Contains 331094 sequences. (Running on oeis4.)