

A239488


Expansion of 1/x4/(sqrt(x^210*x+1)x+1)3.


0



6, 30, 186, 1290, 9582, 74550, 599730, 4948050, 41638614, 356007630, 3083837802, 27006251610, 238704231102, 2126733078630, 19079571337314, 172209370246050, 1562686251141030, 14248144422407550, 130467052593799962
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..19.


FORMULA

a(n) = sum(i = 0..n+1, 2^i*binomial(n,ni+1)*binomial(n+i1,n1))/n.
a(n) = T(2*n,n1)/n where T(n,k) is triangle A116412.
Dfinite with recurrence: (n+1)*a(n) +5*(2*n+1)*a(n1) +(n2)*a(n2)=0. a(n) = 2*A103210(n).  R. J. Mathar, May 23 2014


MAPLE

ogf := 1/x4/(sqrt(x^210*x+1)x+1)3;
series(ogf, x=0, 20): seq(coeff(%, x, n), n=0..19); # Peter Luschny, Mar 21 2014


PROG

(Maxima) a(n):=sum(2^i*binomial(n, ni+1)*binomial(n+i1, n1), i, 0, n+1)/n;


CROSSREFS

Cf. A103210.
Sequence in context: A029571 A259276 A109501 * A147517 A294221 A005922
Adjacent sequences: A239485 A239486 A239487 * A239489 A239490 A239491


KEYWORD

nonn


AUTHOR

Vladimir Kruchinin, Mar 20 2014


STATUS

approved



