The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239447 Partial sums of A030101. 1
 0, 1, 2, 5, 6, 11, 14, 21, 22, 31, 36, 49, 52, 63, 70, 85, 86, 103, 112, 137, 142, 163, 176, 205, 208, 227, 238, 265, 272, 295, 310, 341, 342, 375, 392, 441, 450, 491, 516, 573, 578, 615, 636, 689, 702, 747, 776, 837, 840, 875, 894, 945, 956, 999, 1026, 1085 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 Project Euler, Problem 463: A weird recurrence relation FORMULA a(4n) = 6 a(2n) - 5 a(n) - 3 a(n-1) - 1. a(4n + 1) = 2 a(2n+1) + 4 a(2n) - 6 a(n) - 2 a(n-1) - 1. a(4n + 2) = 3 a(2n+1) + 3 a(2n) - 6 a(n) - 2 a(n-1) - 1. a(4n + 3) = 6 a(2n+1) - 8 a(n) - 1. PROG (Python) A = {0: 0, 1: 1, 2: 2, 3: 5} . def a(n): ....a_n = A.get(n) ....if a_n is not None: ........return a_n . ....q, r = divmod(n, 4) ....if r == 0: ........a_n = a(q*2)*6 - a(q)*5 - a(q - 1)*3 - 1 ....elif r == 1: ........a_n = a(q*2 + 1)*2 + a(q*2)*4 - a(q)*6 - a(q - 1)*2 - 1 ....elif r == 2: ........a_n = a(q*2 + 1)*3 + a(q*2)*3 - a(q)*6 - a(q - 1)*2 - 1 ....else: ........a_n = a(q*2 + 1)*6 - a(q)*8 - 1 . ....A[n] = a_n  # memoization . ....return a_n CROSSREFS Cf. A030101. Sequence in context: A341446 A015613 A135013 * A336527 A293398 A180323 Adjacent sequences:  A239444 A239445 A239446 * A239448 A239449 A239450 KEYWORD nonn AUTHOR Olivier Pirson, Mar 18 2014 EXTENSIONS More terms from Alois P. Heinz, May 19 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 15:55 EDT 2021. Contains 343156 sequences. (Running on oeis4.)