login
Number of invertible octonions over Z/nZ.
5

%I #50 Feb 13 2024 02:20:11

%S 1,128,4320,32768,312000,552960,4939200,8388608,28343520,39936000,

%T 194858400,141557760,752955840,632217600,1347840000,2147483648,

%U 6565340160,3627970560,16089567840,10223616000,21337344000,24941875200,74905892160,36238786560,121875000000,96378347520

%N Number of invertible octonions over Z/nZ.

%C Number of octonions over Z/nZ with invertible norm; i.e., number of solutions of the equation gcd(x_1^2 + ... + x_8^2, n)=1 with 0 < x_i <= n.

%H Andrew Howroyd, <a href="/A239441/b239441.txt">Table of n, a(n) for n = 1..1000</a>

%H Catalina Calderón, Jose Maria Grau, A. Oller-Marcén, and László Tóth, <a href="http://dx.doi.org/10.5486/PMD.2015.7098">Counting invertible sums of squares modulo n and a new generalization of Euler's totient function</a>, Publicationes Mathematicae-Debrecen, Vol. 87 (1-2) (2015), pp. 133-145; <a href="https://arxiv.org/abs/1403.7878">arXiv preprint</a>, arXiv:1403.7878 [math.NT], 2014.

%F Multiplicative with a(2^e) = 2^(8*e-1), a(p^e) = (p - 1)*p^(8*e - 5)*(p^4 - 1) for odd prime p. - _Andrew Howroyd_, Aug 06 2018

%F Sum_{k=1..n} a(k) ~ c * n^9, where c = (16/141) * Product_{p prime} (1 - 1/p^2 - 1/p^5 + 1/p^6) = 0.06731687367... . - _Amiram Eldar_, Nov 30 2022

%F From _Amiram Eldar_, Feb 13 2024: (Start)

%F Dirichlet g.f.: zeta(s-8) * (1 - 1/2^(s-7)) * Product_{p prime > 2} (1 - 1/p^(s-7) - (p-1)/p^(s-3)).

%F Sum_{n>=1} 1/a(n) = (257*Pi^14/1312151400) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^6 + 1/p^9 + 1/p^10 + 1/p^12 - 1/p^14) = 1.00807991170717322545... . (End)

%t fa=FactorInteger;lon[n_]:=Length[fa[n]];Phi[k_, n_] := Which[Mod[k, 2] == 1, n^(k - 1)*EulerPhi[n], Mod[k, 4] ==0, n^(k - 1)*EulerPhi[n]*Product[1 - 1/fa[2n][[i, 1]]^(k/2), {i, 2, lon[2 n]}],True, n^(k - 1)*EulerPhi[n]*Product[Which[ Mod[fa[ n][[i, 1]], 4] == 3 , 1 + 1/fa[ n][[i, 1]]^(k/2), Mod[fa[ n][[i, 1]], 4] == 1, 1 - 1/fa[ n][[i, 1]]^(k/2), True, 1], {i, 1, lon[ n]}]]; Table[Phi[8,n],{n,1,100}]

%t f[p_, e_] := (p-1)*p^(8*e-1) * If[p == 2, 1, 1 - 1/p^4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* _Amiram Eldar_, Feb 13 2024 *)

%o (PARI) a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^8)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)))} \\ _Andrew Howroyd_, Aug 06 2018

%o (PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p==2, 2^(8*e-1), (p - 1)*p^(8*e - 5)*(p^4 - 1)))} \\ _Andrew Howroyd_, Aug 06 2018

%Y Sequences giving the number of solutions to the equation gcd(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).

%K nonn,easy,mult

%O 1,2

%A _José María Grau Ribas_, Mar 18 2014