OFFSET
1,1
COMMENTS
All of the numbers in this sequence are odd multiples of 3 and, thus, congruent to 3 (mod 6).
The tenth powers modulo 6 are 1, 4, 3, 4, 1, 0, ... (A070431). Subtracting 10 (still modulo 6), we get 3, 0, 5, 0, 3, 2, ... which means that only n = 3 mod 6 can produce a potential prime p = 5 mod 6.
EXAMPLE
21^10 - 10 = 16679880978191 is prime. Thus, 21 is a member of this sequence.
MATHEMATICA
Select[Range[1000], PrimeQ[#^10 - 10] &] (* Alonso del Arte, Mar 18 2014 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(n) for n in range(10**4) if isprime(n**10-10)}
(PARI) is(n)=isprime(n^10-10) \\ Charles R Greathouse IV, Feb 20 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Derek Orr, Mar 17 2014
STATUS
approved