login
A239382
Decimal expansion of the probability of a normal-error variable exceeding the mean by more than one standard deviation.
8
1, 5, 8, 6, 5, 5, 2, 5, 3, 9, 3, 1, 4, 5, 7, 0, 5, 1, 4, 1, 4, 7, 6, 7, 4, 5, 4, 3, 6, 7, 9, 6, 2, 0, 7, 7, 5, 2, 2, 0, 8, 7, 0, 3, 3, 2, 7, 3, 3, 9, 5, 6, 0, 9, 0, 1, 2, 6, 0, 5, 5, 4, 9, 7, 5, 7, 0
OFFSET
0,2
COMMENTS
The probability P{(x-m)/s > 1} for a normally distributed random variable x with mean m and standard deviation s.
In experimental sciences (hypothesis testing), a measured excursion exceeding background "noise" by just one standard deviation is not significant, unless corroborated by strong additional indications.
LINKS
FORMULA
P{(x-m)/s > 1} = P{(x-m)/s < -1} = 0.5*erfc(1/sqrt(2)) = erfc(sqrt(2)/2)/2, with erfc(x) being the complementary error function.
EXAMPLE
0.15865525393145705141476745436796207752208703327339560901260...
MATHEMATICA
First[RealDigits[1 - CDF[NormalDistribution[], 1], 10, 100]] (* Joan Ludevid, Jun 13 2022 *)
PROG
(PARI) n=1; a=0.5*erfc(n/sqrt(2)) \\ Use sufficient realprecision
CROSSREFS
Cf. P{(x-m)/s>n}: A239383 (n=2), A239384 (n=3), A239385 (n=4), A239386 (n=5), A239387 (n=6).
Sequence in context: A102519 A334849 A199265 * A085117 A301862 A245944
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Mar 17 2014
STATUS
approved