This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239359 Number of n X 6 0..2 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 3. 1
 7, 19, 39, 77, 156, 266, 409, 599, 852, 1191, 1635, 2213, 2944, 3837, 4910, 6178, 7657, 9363, 11312, 13520, 16003, 18777, 21858, 25262, 29005, 33103, 37572, 42428, 47687, 53365, 59478, 66042, 73073, 80587, 88600, 97128, 106187, 115793, 125962, 136710 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 FORMULA Empirical: a(n) = (8/3)*n^3 - (45/2)*n^2 + (257/6)*n + 330 for n>13. Conjectures from Colin Barker, Oct 26 2018: (Start) G.f.: x*(7 - 9*x + 5*x^2 + 7*x^3 + 13*x^4 - 33*x^5 + 12*x^6 + 12*x^7 + 2*x^8 + 7*x^9 - 4*x^10 + 10*x^11 - 10*x^12 - 10*x^13 + 9*x^14 - 3*x^15 + x^16) / (1 - x)^4. a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>17. (End) EXAMPLE Some solutions for n=5: ..0..0..0..0..2..2....0..0..0..0..0..0....0..0..0..0..0..0....0..0..2..2..0..0 ..0..0..0..2..2..1....0..0..0..0..0..0....0..0..0..0..0..2....0..0..2..1..2..2 ..0..0..0..2..1..2....2..2..0..0..0..0....0..0..0..0..0..2....0..0..0..2..2..1 ..0..0..0..0..2..2....2..1..2..2..0..0....2..2..0..0..0..0....0..0..0..2..1..2 ..2..2..0..0..0..0....0..2..2..1..2..0....2..1..2..2..0..0....2..2..0..0..1..2 CROSSREFS Column 6 of A239361. Sequence in context: A108766 A303855 A295077 * A120720 A098422 A191066 Adjacent sequences:  A239356 A239357 A239358 * A239360 A239361 A239362 KEYWORD nonn AUTHOR R. H. Hardin, Mar 17 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 14:36 EDT 2019. Contains 328019 sequences. (Running on oeis4.)