

A239359


Number of n X 6 0..2 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 3.


1



7, 19, 39, 77, 156, 266, 409, 599, 852, 1191, 1635, 2213, 2944, 3837, 4910, 6178, 7657, 9363, 11312, 13520, 16003, 18777, 21858, 25262, 29005, 33103, 37572, 42428, 47687, 53365, 59478, 66042, 73073, 80587, 88600, 97128, 106187, 115793, 125962, 136710
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210


FORMULA

Empirical: a(n) = (8/3)*n^3  (45/2)*n^2 + (257/6)*n + 330 for n>13.
Conjectures from Colin Barker, Oct 26 2018: (Start)
G.f.: x*(7  9*x + 5*x^2 + 7*x^3 + 13*x^4  33*x^5 + 12*x^6 + 12*x^7 + 2*x^8 + 7*x^9  4*x^10 + 10*x^11  10*x^12  10*x^13 + 9*x^14  3*x^15 + x^16) / (1  x)^4.
a(n) = 4*a(n1)  6*a(n2) + 4*a(n3)  a(n4) for n>17.
(End)


EXAMPLE

Some solutions for n=5:
..0..0..0..0..2..2....0..0..0..0..0..0....0..0..0..0..0..0....0..0..2..2..0..0
..0..0..0..2..2..1....0..0..0..0..0..0....0..0..0..0..0..2....0..0..2..1..2..2
..0..0..0..2..1..2....2..2..0..0..0..0....0..0..0..0..0..2....0..0..0..2..2..1
..0..0..0..0..2..2....2..1..2..2..0..0....2..2..0..0..0..0....0..0..0..2..1..2
..2..2..0..0..0..0....0..2..2..1..2..0....2..1..2..2..0..0....2..2..0..0..1..2


CROSSREFS

Column 6 of A239361.
Sequence in context: A108766 A303855 A295077 * A120720 A098422 A191066
Adjacent sequences: A239356 A239357 A239358 * A239360 A239361 A239362


KEYWORD

nonn


AUTHOR

R. H. Hardin, Mar 17 2014


STATUS

approved



