login
A239331
Square array, read by antidiagonals: column k has g.f. (1+(k-1)*x)^2/(1-x)^3.
2
1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 13, 10, 1, 1, 9, 22, 25, 15, 1, 1, 11, 33, 46, 41, 21, 1, 1, 13, 46, 73, 79, 61, 28, 1, 1, 15, 61, 106, 129, 121, 85, 36, 1, 1, 17, 78, 145, 191, 201, 172, 113, 45, 1, 1, 19, 97, 190, 265, 301, 289, 232, 145, 55, 1, 1, 21
OFFSET
0,5
FORMULA
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k).
T(n,k) = 3*T(n,k-1) - 3*T(n,k-2) + T(n,k-3).
T(n,k) = (T(n,k-1) + T(n,k+1))/2 - A161680(n).
T(n,k) = (T(n-1,k) + T(n+1,k) - A000290(n))/2.
EXAMPLE
Square array begins:
n\k : 0......1......2......3......4......5......6......7......8......9
======================================================================
.0|| 1......1......1......1......1......1......1......1......1......1
.1|| 1......3......5......7......9.....11.....13.....15.....17.....19
.2|| 1......6.....13.....22.....33.....46.....61.....78.....97....118
.3|| 1.....10.....25.....46.....73....106....145....190....241....298
.4|| 1.....15.....41.....79....129....191....265....351....449....559
.5|| 1.....21.....61....121....201....301....421....561....721....901
.6|| 1.....28.....85....172....289....436....613....820...1057...1324
.7|| 1.....36....113....232....393....596....841...1128...1457...1828
.8|| 1.....45....145....301....513....781...1105...1485...1921...2413
.9|| 1.....55....181....379....649....991...1405...1891...2449...3079
10|| 1.....66....221....466....801...1226...1741...2346...3041...3826
11|| 1.....78....265....562....969...1486...2113...2850...3697...4654
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 16 2014
STATUS
approved