This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239301 E.g.f.: exp((1-5*x)^(-1/5)-1)/(1-5*x). 3
 1, 6, 67, 1090, 23265, 614302, 19323163, 705288522, 29296813825, 1364468928022, 70414831288275, 3987980655931570, 245910243177940897, 16399345182278307822, 1176033825828643912747, 90242683036826223141370, 7377887848681408224106497, 640225878087732419052020134 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Generally, for e.g.f.: exp((1-p*x)^(-1/p)-1)/(1-p*x)), and p>1, we have a(n) ~ 1/sqrt(p+1) * p^(n+(2*p+1)/(2*p+2)) * exp((p+1)*p^(-p/(p+1)) *n^(1/(p+1))-n-1) * n^(n+p/(2*p+2)). LINKS FORMULA a(n) = 5*(6*n - 13)*a(n-1) - 5*(75*n^2 - 400*n + 557)*a(n-2) + 50*(50*n^3 - 475*n^2 + 1539*n - 1698)*a(n-3) - (9375*n^4 - 137500*n^3 + 764625*n^2 - 1910000*n + 1807524)*a(n-4) + (18750*n^5 - 390625*n^4 + 3267500*n^3 - 13716875*n^2 + 28896490*n - 24436079)*a(n-5) - 25*(n-5)^2*(5*n - 24)*(5*n - 23)*(5*n - 22)*(5*n - 21)*a(n-6). a(n) ~ 1/sqrt(6) * 5^(n+11/12) * exp(6*5^(-5/6)*n^(1/6)-n-1) * n^(n+5/12). MATHEMATICA CoefficientList[Series[E^((1-5*x)^(-1/5)-1)/(1-5*x), {x, 0, 20}], x]*Range[0, 20]! CROSSREFS Cf. A121629, A121630, A121631. Sequence in context: A231598 A073562 A230342 * A121958 A177555 A054746 Adjacent sequences:  A239298 A239299 A239300 * A239302 A239303 A239304 KEYWORD nonn AUTHOR Vaclav Kotesovec, Mar 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 25 03:10 EDT 2019. Contains 326318 sequences. (Running on oeis4.)