login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239260 Number of partitions of n having (sum of odd parts) <= (sum of even parts). 5
1, 0, 1, 1, 3, 2, 5, 7, 12, 11, 18, 26, 40, 40, 60, 83, 117, 120, 168, 230, 312, 331, 446, 592, 784, 821, 1083, 1407, 1826, 1940, 2511, 3220, 4097, 4347, 5520, 6976, 8779, 9338, 11732, 14627, 18196, 19314, 23999, 29654, 36503, 38907, 47835, 58555, 71484, 75942 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..500

FORMULA

a(n) + A239262(n) = A000041(n).

EXAMPLE

a(8) counts these 12 partitions:  8, 62, 611, 44, 431, 422, 4211, 41111, 3221, 2222, 22211, 221111.

MATHEMATICA

z = 40; p[n_] := p[n] = IntegerPartitions[n]; f[t_] := f[t] = Length[t]

t1 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] < n &]], {n, z}] (* A239259 *)

t2 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] <= n &]], {n, z}] (* A239260 *)

t3 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] == n &]], {n, z}] (* A239261 *)

t4 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] > n &]], {n, z}] (* A239262 *)

t5 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] >= n &]], {n, z}] (* A239263 *)

(* Peter J. C. Moses, Mar 12 2014 *)

CROSSREFS

Cf. A239259, A239261, A239262, A239263, A000041.

Sequence in context: A266635 A110338 A171018 * A013655 A223701 A220519

Adjacent sequences:  A239257 A239258 A239259 * A239261 A239262 A239263

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 13 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 00:40 EDT 2020. Contains 335502 sequences. (Running on oeis4.)