login
A239202
Multiplicative order of phi(n) modulo n when gcd(phi(n),n)=1.
1
1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 10, 6, 2, 2, 2, 2, 8, 2, 2, 2, 12, 2, 22, 2, 2, 15, 2, 2, 4, 28, 2, 12, 36, 2, 2, 2, 2, 2, 2, 44, 48, 20, 2, 2, 18, 2, 2, 46, 6, 28, 2, 2, 2, 52, 22, 2, 2, 2, 58, 2, 2, 18, 80, 2, 2, 2, 2, 45, 2, 70, 28, 6, 48, 2, 2, 2
OFFSET
1,3
LINKS
EXAMPLE
For n = 8: the 8th entry of A003277 is 15, and phi(15) = 8 has multiplicative order 4 modulo 15, so a(8) = 4.
MATHEMATICA
MultiplicativeOrder[EulerPhi[#], #] & /@ Select[Range[1000], GCD[#, EulerPhi[#]] == 1 &]
PROG
(PARI) lista(nn) = {for(n=1, nn, my(ephi = eulerphi(n)); if (gcd(ephi, n) == 1, print1(znorder(Mod(ephi, n)), ", ")); ); } \\ Michel Marcus, Feb 09 2015
CROSSREFS
Indexed by A003277.
Sequence in context: A332201 A060467 A125918 * A083533 A076500 A344887
KEYWORD
nonn
AUTHOR
Alexander Gruber, Mar 12 2014
STATUS
approved