login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239164 Number of partitions of 5^n into parts that are at most n with at least one part of each size. 2
0, 1, 12, 1240, 1655004, 32796849930, 10743023668660275, 62590747974586286694030, 6826987264035710020018176749475, 14471606032117455546329821353159274382372, 613427607589897771307393494301176209875530879140211 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..40

A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz), arXiv:1108.4391 [math.CO], 2011.

FORMULA

a(n) = [x^(5^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).

a(n) ~ 5^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015

EXAMPLE

a(2) = 12: 2222222222221, 22222222222111, 222222222211111, 2222222221111111, 22222222111111111, 222222211111111111, 2222221111111111111, 22222111111111111111, 222211111111111111111, 2221111111111111111111, 22111111111111111111111, 211111111111111111111111.

MATHEMATICA

maxExponent = 45; a[0] = 0; a[1] = 1;

a[n_] := Module[{}, aparts = List @@ (Product[1/(1 - x^j), {j, 1, n}] // Apart); cc = aparts + O[x]^maxExponent // CoefficientList[#, x]&; f[k_] = Total[FindSequenceFunction[#, k]& /@ cc]; f[5^n - n(n+1)/2 + 1] // Round];

Table[an = a[n]; Print[n, " ", an]; an, {n, 0, 10}] (* Jean-Fran├žois Alcover, Nov 15 2018 *)

CROSSREFS

Column k=5 of A238012.

Sequence in context: A317953 A009155 A078296 * A209176 A137343 A133461

Adjacent sequences:  A239161 A239162 A239163 * A239165 A239166 A239167

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Mar 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 10:07 EDT 2019. Contains 321421 sequences. (Running on oeis4.)