

A239074


Given a circle of radius R into which small circles of radius R/2^n are packed in a "hexagonal pattern" (see Comments), a(n) is the number of points at which a small circle is tangent to the big circle.


4



2, 2, 6, 2, 6, 6, 6, 2, 18, 6, 2, 18, 6, 18, 54, 2, 6, 54, 6, 6, 90, 2, 2, 54, 54, 18, 54, 18, 6, 162, 6, 2, 18, 6, 18, 1458, 18, 18, 162, 18, 2, 810, 6, 18, 1458, 2, 6, 486, 18, 162, 486, 54, 6, 486, 18, 54, 162, 18, 2, 4374, 6, 18, 2430, 6, 54, 162, 18, 18, 18, 54
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The construction rule is: (1) Start with a unit circle (big Rcircle). (2) Pack circles at radius 1/2^n (small rcircles) on the diameter line of the big circle. (3) Pack small circles in the rows above and below the row packed in the previous step, maintaining a hexagonal packing pattern. The number of small circles in any row is limited so that the circumference of the last small circle does not cross (but is allowed to contact) the circumference of the big circle. (4) Repeat process to the top and bottom rows.
The contact points are the points where the circumference of a small circle contacts the circumference of the big circle, i.e., they are mutually tangent.
See illustration in links.
Also, the number of integer solutions to the equation (2^n1)^2 = 3*x^2 + y^2.  Andrew Howroyd, May 27 2018


LINKS

Table of n, a(n) for n=1..70.
Kival Ngaokrajang, Illustration of initial terms
Kival Ngaokrajang, Illustration for n = 9


FORMULA

a(n) = 2 + 4*A(n), n >= 1, with A(n) the number of integer solutions for x(n,j) = sqrt((2^n1)^2 + 3*j^2), for j = 1, 2, ..., floor((2^n1)/sqrt(3)). R = 2^n and r=1 (small radius) was used here.  Wolfdieter Lang, Apr 07 2014
a(n) = A033716((2^n  1)^2).  Andrew Howroyd, May 27 2018


EXAMPLE

n=9 (see the link): In the first quadrant, shown there, there are 4 touching points with the large circle for rows x > 0, namely for the rows 52, 132, 280 and 292. With the trivial 2 touching points with the large circle for the row x=0 this adds to the total number 2 + 4*4 = 18 = a(9).  Wolfdieter Lang, Apr 06 2014


MATHEMATICA

a[1] = 2; a[n_] := Module[{f = FactorInteger[2^n  1]}, 2*Product[If[Mod[ f[[i, 1]], 3] == 1, 2*f[[i, 2]] + 1, 1] , {i, 1, Length[f]}]];
Array[a, 70] (* JeanFrançois Alcover, Jul 03 2018, after Andrew Howroyd *)


PROG

(PARI) a(n) = {my(f=factor(2^n1)); 2*prod(i=1, #f~, if(f[i, 1]%3==1, 2*f[i, 2]+1, 1))} \\ Andrew Howroyd, May 27 2018


CROSSREFS

Cf. A033716, A239073, A239206.
Sequence in context: A187223 A175194 A086568 * A160122 A093656 A174028
Adjacent sequences: A239071 A239072 A239073 * A239075 A239076 A239077


KEYWORD

nonn


AUTHOR

Kival Ngaokrajang, Apr 06 2014


EXTENSIONS

Corrected and extended by Wolfdieter Lang, Apr 06 2014
a(26)a(70) from Andrew Howroyd, May 27 2018


STATUS

approved



