login
A239061
Number of integers x, 1 <= x <= n, such that x^x == 1 (mod n).
4
1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 5, 2, 4, 1, 4, 1, 4, 1, 3, 3, 2, 1, 2, 3, 2, 2, 4, 1, 3, 1, 5, 1, 6, 1, 3, 2, 4, 1, 5, 1, 6, 3, 5, 1, 2, 1, 4, 1, 6, 2, 3, 1, 5, 2, 3, 3, 3, 1, 5, 3, 3, 1, 9, 2, 5, 1, 5, 2, 4, 1, 5, 3, 5, 3, 10, 1, 5, 1, 2, 1, 3, 1, 10, 3
OFFSET
1,3
LINKS
MATHEMATICA
gg1[n_] := Sum[If[PowerMod[x, x, n] == Mod[1, n], 1, 0], {x, n}]; Array[gg1, 200]
CROSSREFS
Cf. A239062, A239063 (indices of 1's).
Sequence in context: A338651 A033107 A354598 * A309025 A247599 A083897
KEYWORD
nonn
AUTHOR
STATUS
approved