login
A239049
Decimal expansion of Pi*(2/3)^(1/2).
2
2, 5, 6, 5, 0, 9, 9, 6, 6, 0, 3, 2, 3, 7, 2, 8, 1, 9, 1, 0, 8, 8, 0, 7, 2, 7, 1, 9, 3, 4, 2, 0, 1, 2, 8, 2, 2, 9, 3, 4, 5, 2, 1, 3, 3, 5, 1, 2, 8, 1, 8, 4, 6, 4, 6, 2, 0, 2, 7, 7, 9, 2, 1, 3, 5, 1, 2, 7, 9, 7, 6, 4, 7, 0, 2, 6, 0, 4, 4, 2, 0, 2, 0, 6, 6, 5, 7, 3, 8, 3, 8, 1, 0, 4, 7, 8, 8, 8, 8, 1, 4, 9, 0, 3, 1
OFFSET
1,1
COMMENTS
Decimal expansion of Pi*6^(1/2)/3.
Constant found in the Hardy-Ramanujan asymptotic formula of the number of partitions of n, for n = 1.
Also constant mentioned in the DeSalvo-Pak paper, see pages 2, 4, 6.
LINKS
S. DeSalvo, I. Pak, Log-concavity of the partition function, arXiv:1310.7982v1 [math.CO], 2013-2014.
Steven Finch, Integer Partitions, Sep 22 2004. [Cached copy, with permission of the author]
FORMULA
Equals A000796 * A157697.
EXAMPLE
2.5650996603237281910880727193420128229345213351281846...
MAPLE
evalf(Pi*(2/3)^(1/2), 120) # Vaclav Kotesovec, Oct 17 2014
MATHEMATICA
RealDigits[Pi*Sqrt[2/3], 10, 100][[1]] (* G. C. Greubel, Mar 31 2018 *)
PROG
(PARI) Pi*sqrt(2/3) \\ G. C. Greubel, Mar 31 2018
(Magma) R:=RealField(); Pi(R)*Sqrt(2/3); // G. C. Greubel, Mar 31 2018
CROSSREFS
Cf. A000796.
Sequence in context: A262152 A016636 A103989 * A161017 A198231 A272207
KEYWORD
nonn,cons
AUTHOR
Omar E. Pol, Mar 16 2014
EXTENSIONS
More terms from Vaclav Kotesovec, Oct 17 2014
STATUS
approved