login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239049 Decimal expansion of Pi*(2/3)^(1/2). 2
2, 5, 6, 5, 0, 9, 9, 6, 6, 0, 3, 2, 3, 7, 2, 8, 1, 9, 1, 0, 8, 8, 0, 7, 2, 7, 1, 9, 3, 4, 2, 0, 1, 2, 8, 2, 2, 9, 3, 4, 5, 2, 1, 3, 3, 5, 1, 2, 8, 1, 8, 4, 6, 4, 6, 2, 0, 2, 7, 7, 9, 2, 1, 3, 5, 1, 2, 7, 9, 7, 6, 4, 7, 0, 2, 6, 0, 4, 4, 2, 0, 2, 0, 6, 6, 5, 7, 3, 8, 3, 8, 1, 0, 4, 7, 8, 8, 8, 8, 1, 4, 9, 0, 3, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Decimal expansion of Pi*6^(1/2)/3.

Constant found in the Hardy-Ramanujan asymptotic formula of the number of partitions of n, for n = 1.

Also constant mentioned in the DeSalvo-Pak paper, see pages 2, 4, 6.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

S. DeSalvo, I. Pak, Log-concavity of the partition function, arXiv:1310.7982v1 [math.CO], 2013-2014.

Steven Finch, Integer Partitions, September 22, 2004. [Cached copy, with permission of the author]

FORMULA

Equals A000796 * A157697.

EXAMPLE

2.5650996603237281910880727193420128229345213351281846...

MAPLE

evalf(Pi*(2/3)^(1/2), 120) # Vaclav Kotesovec, Oct 17 2014

MATHEMATICA

RealDigits[Pi*Sqrt[2/3], 10, 100][[1]] (* G. C. Greubel, Mar 31 2018 *)

PROG

(PARI) Pi*sqrt(2/3) \\ G. C. Greubel, Mar 31 2018

(MAGMA) R:=RealField(); Pi(R)*Sqrt(2/3); // G. C. Greubel, Mar 31 2018

CROSSREFS

Cf. A000796.

Sequence in context: A262152 A016636 A103989 * A161017 A198231 A272207

Adjacent sequences:  A239046 A239047 A239048 * A239050 A239051 A239052

KEYWORD

nonn,cons

AUTHOR

Omar E. Pol, Mar 16 2014

EXTENSIONS

More terms from Vaclav Kotesovec, Oct 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 01:29 EDT 2019. Contains 323528 sequences. (Running on oeis4.)