OFFSET
1,1
COMMENTS
Decimal expansion of Pi*6^(1/2)/3.
Constant found in the Hardy-Ramanujan asymptotic formula of the number of partitions of n, for n = 1.
Also constant mentioned in the DeSalvo-Pak paper, see pages 2, 4, 6.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
S. DeSalvo, I. Pak, Log-concavity of the partition function, arXiv:1310.7982v1 [math.CO], 2013-2014.
Steven Finch, Integer Partitions, Sep 22 2004. [Cached copy, with permission of the author]
EXAMPLE
2.5650996603237281910880727193420128229345213351281846...
MAPLE
evalf(Pi*(2/3)^(1/2), 120) # Vaclav Kotesovec, Oct 17 2014
MATHEMATICA
RealDigits[Pi*Sqrt[2/3], 10, 100][[1]] (* G. C. Greubel, Mar 31 2018 *)
PROG
(PARI) Pi*sqrt(2/3) \\ G. C. Greubel, Mar 31 2018
(Magma) R:=RealField(); Pi(R)*Sqrt(2/3); // G. C. Greubel, Mar 31 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Omar E. Pol, Mar 16 2014
EXTENSIONS
More terms from Vaclav Kotesovec, Oct 17 2014
STATUS
approved