OFFSET
1,3
COMMENTS
Table starts
..1...1.....1......1.......1........1.........1.........1..........1
..2...3.....4......5.......6........7.........8.........9.........10
..2...4.....7.....11......16.......22........29........37.........46
..4..11....28.....59.....110......189.......306.......473........704
..4..16....54....149.....354......757......1495......2773.......4888
..8..43...212....806....2592.....7265.....18362.....42809......93464
..8..64...428...2195....9319....33699....107611....311585.....833304
.16.171..1652..11768...69288...339315...1435014...5388959...18371174
.16.256..3410..33417..265247..1719471...9453266..45358859..194626082
.32.683.13004.177087.1965398.17562449.131139508.838702960.4711005062
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..480
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-2)
k=2: a(n) = 5*a(n-2) -4*a(n-4)
k=3: a(n) = 17*a(n-2) -96*a(n-4) +210*a(n-6) -152*a(n-8)
k=4: [order 18]
k=5: [order 38]
k=6: [order 90]
Empirical for row n:
n=1: a(n) = 1
n=2: a(n) = n + 1
n=3: a(n) = (1/2)*n^2 + (1/2)*n + 1
n=4: a(n) = (1/12)*n^4 - (1/6)*n^3 + (47/12)*n^2 - (29/6)*n + 5
n=5: [polynomial of degree 6] for n>1
n=6: [polynomial of degree 9] for n>2
n=7: [polynomial of degree 12] for n>3
EXAMPLE
Some solutions for n=5 k=4
..2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0
..2..0..0..0....1..2..2..0....2..0..0..0....1..0..2..2....1..2..2..0
..1..0..2..2....2..1..2..0....1..0..2..2....2..0..1..2....2..1..2..0
..2..0..1..1....2..0..1..2....1..0..2..1....2..0..0..1....2..0..1..2
..1..0..2..2....1..0..2..2....2..0..0..0....1..0..2..1....1..2..2..1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 09 2014
STATUS
approved