This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239003 Number of partitions of n into distinct Fibonacci numbers that are all greater than 2. 2
 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 0, 3, 0, 0, 2, 0, 2, 0, 0, 3, 0, 0, 1, 0, 3, 0, 0, 3, 0, 2, 0, 0, 4, 0, 0, 2, 0, 3, 0, 0, 3, 0, 1, 0, 0, 4, 0, 0, 3, 0, 3, 0, 0, 5, 0, 0, 2, 0, 4, 0, 0, 4, 0, 2, 0, 0, 5, 0, 0, 3, 0, 3, 0, 0, 4, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS a(n) > 0 if n+1 is a term of A003622; a(n) = 0 if n+1 is a term of A022342. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10946 FORMULA G.f.: product(1 + x^F(j), j=4..infinity). - Wolfdieter Lang, Mar 15 2014 EXAMPLE There is one partition for n=0, the empty partition.  All parts are distinct, which means that there are no two parts that are equal. So a(0)=1. MAPLE F:= combinat[fibonacci]: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<4, 0,        b(n, i-1)+`if`(F(i)>n, 0, b(n-F(i), i-1))))     end: a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1)        while F(j+1)<=n do od; b(n, j)     end: seq(a(n), n=0..100);  # Alois P. Heinz, Mar 15 2014 MATHEMATICA f = Table[Fibonacci[n], {n, 4, 75}];  b[n_] := SeriesCoefficient[Product[1 + x^f[[k]], {k, n}], {x, 0, n}]; u = Table[b[n], {n, 0, 60}]  (* A239003 *) Flatten[Position[u, 0]]  (* A022342 *) CROSSREFS Cf. A000201, A001950, A000045, A000119, A239002, A000009. Sequence in context: A084888 A091400 A129448 * A123759 A072453 A307303 Adjacent sequences:  A239000 A239001 A239002 * A239004 A239005 A239006 KEYWORD nonn,easy,look AUTHOR Clark Kimberling, Mar 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 16:29 EDT 2019. Contains 325049 sequences. (Running on oeis4.)