login
A239003
Number of partitions of n into distinct Fibonacci numbers that are all greater than 2.
2
1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 0, 3, 0, 0, 2, 0, 2, 0, 0, 3, 0, 0, 1, 0, 3, 0, 0, 3, 0, 2, 0, 0, 4, 0, 0, 2, 0, 3, 0, 0, 3, 0, 1, 0, 0, 4, 0, 0, 3, 0, 3, 0, 0, 5, 0, 0, 2, 0, 4, 0, 0, 4, 0, 2, 0, 0, 5, 0, 0, 3, 0, 3, 0, 0, 4, 0, 0
OFFSET
0,9
COMMENTS
a(n) > 0 if n+1 is a term of A003622; a(n) = 0 if n+1 is a term of A022342.
LINKS
FORMULA
G.f.: product(1 + x^F(j), j=4..infinity). - Wolfdieter Lang, Mar 15 2014
EXAMPLE
There is one partition for n=0, the empty partition. All parts are distinct, which means that there are no two parts that are equal. So a(0)=1.
MAPLE
F:= combinat[fibonacci]:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<4, 0,
b(n, i-1)+`if`(F(i)>n, 0, b(n-F(i), i-1))))
end:
a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1)
while F(j+1)<=n do od; b(n, j)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Mar 15 2014
MATHEMATICA
f = Table[Fibonacci[n], {n, 4, 75}]; b[n_] := SeriesCoefficient[Product[1 + x^f[[k]], {k, n}], {x, 0, n}]; u = Table[b[n], {n, 0, 60}] (* A239003 *)
Flatten[Position[u, 0]] (* A022342 *)
CROSSREFS
KEYWORD
nonn,easy,look
AUTHOR
Clark Kimberling, Mar 08 2014
STATUS
approved