OFFSET
0,9
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1/Product_{i>=4} (1 - x^Fibonacci(i)).
EXAMPLE
a(21) counts these partitions: [21], [13,8], [13,5,3], [8,8,5], [8,5,5,3], [5,5,5,3,3], [3,3,3,3,3,3,3].
MATHEMATICA
p[n_] := IntegerPartitions[n, All, Fibonacci@Range[4, 60]]; Table[p[n], {n, 0, 12}] (*shows partitions*)
a[n_] := Length@p@n; a /@ Range[0, 80] (*counts partitions, A239000*)
PROG
(PARI) N=66; q='q+O('q^N); Vec( 1/prod(n=1, 11, 1-q^fibonacci(n+3)) ) \\ Joerg Arndt, Mar 11 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 08 2014
STATUS
approved