Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 Mar 26 2020 19:48:43
%S 0,1,2,2,2,3,3,2,3,4,4,4,2,3,4,4,5,5,5,2,3,4,4,4,5,5,6,6,6,6,2,3,4,4,
%T 4,5,5,5,6,6,6,7,7,7,7,2,3,4,4,4,5,5,4,5,6,6,6,6,6,7,7,7,8,8,8,8,8,2,
%U 3,4,4,4,5,5,4,5,6,6,6,5,6,6,7,7,7,6,7,7,8,8,8,8,9,9,9,9,9
%N Degree of divisor lattice in divisor lattice in canonical order.
%H Andrew Howroyd, <a href="/A238969/b238969.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)
%H S.-H. Cha, E. G. DuCasse, and L. V. Quintas, <a href="http://arxiv.org/abs/1405.5283">Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures</a>, arxiv:1405.5283 [math.NT], 2014.
%F T(n,k) = A238949(A063008(n,k)). - _Andrew Howroyd_, Mar 26 2020
%e Triangle T(n,k) begins:
%e 0;
%e 1;
%e 2, 2;
%e 2, 3, 3;
%e 2, 3, 4, 4, 4;
%e 2, 3, 4, 4, 5, 5, 5;
%e 2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6;
%e ...
%o (PARI)
%o C(sig)={sum(i=1, #sig, if(sig[i]>1, 2, 1))}
%o Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
%o { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 26 2020
%Y Cf. A238956 in canonical order.
%Y Cf. A063008, A238949.
%K nonn,tabf
%O 0,3
%A _Sung-Hyuk Cha_, Mar 07 2014
%E Offset changed and terms a(50) and beyond from _Andrew Howroyd_, Mar 26 2020