login
A238912
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to all horizontal neighbors or equal to all vertical neighbors, and new values 0..2 introduced in row major order
7
3, 9, 9, 54, 41, 54, 261, 486, 486, 261, 1341, 4287, 17496, 4287, 1341, 6768, 41165, 408726, 408726, 41165, 6768, 34335, 385632, 10789686, 22778013, 10789686, 385632, 34335, 173925, 3638773, 274834944, 1474369337, 1474369337, 274834944, 3638773
OFFSET
1,1
COMMENTS
Table starts
.......3..........9..............54.................261....................1341
.......9.........41.............486................4287...................41165
......54........486...........17496..............408726................10789686
.....261.......4287..........408726............22778013..............1474369337
....1341......41165........10789686..........1474369337............241302194385
....6768.....385632.......274834944.........91433307852..........37515316223070
...34335....3638773......7073353350.......5739848041311........5917999098852871
..173925...34262775....181499433750.....359075051396597......929709624020566839
..881406..322817734...4661259221016...22485455035768752...146227628520093446270
.4466169.3040984385.119679993219366.1407650415969195223.22991463214552411818739
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) +6*a(n-2) -3*a(n-3)
k=2: [order 10]
k=3: a(n) = 22*a(n-1) +120*a(n-2) -678*a(n-3) +522*a(n-4) +432*a(n-5) -81*a(n-6)
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1..2....0..1..0..0..1....0..1..0..1..0....0..1..0..1..0
..1..2..1..2..1....1..0..2..2..0....1..2..1..0..1....2..0..2..0..2
..0..2..0..2..0....0..1..2..1..0....0..2..1..0..2....0..2..1..1..2
..2..1..2..1..2....1..0..1..0..1....2..1..2..2..1....2..1..0..2..0
CROSSREFS
Sequence in context: A203558 A223653 A351929 * A038227 A080292 A273893
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 07 2014
STATUS
approved