login
A238844
Combinatorial configuration types of n (unlabeled) queens on a square board.
0
1, 4, 36, 574, 14206, 501552
OFFSET
1,2
COMMENTS
I believe an early version of Chaiken et al., Part I, had a(6) = 510552, but Parts I and IV now both have a(6) = 501552. - N. J. A. Sloane, Aug 22 2017
LINKS
Seth Chaiken, Christopher R. H. Hanusa, and Thomas Zaslavsky, A q-queens problem. I. General theory, Electronic J. Combin., 21 (2014), no. 3, Paper #P3.33, 28 pp. MR 3262270, Zbl 1298.05021. Also arxiv preprint, arXiv:1303.1879 [math.CO], 2013-2014.
Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016. See Table 8.1.
CROSSREFS
Sequence in context: A070780 A132687 A364152 * A073852 A139033 A370753
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 20 2014
EXTENSIONS
a(6) corrected by N. J. A. Sloane, Aug 22 2017
STATUS
approved