Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #15 Jun 11 2022 03:33:20
%S 1,1,0,-1,-1,0,1,-1,-8,-16,-16,-12,-41,-138,-210,47,849,1471,-493,
%T -8052,-19901,-19966,37556,223807,508523,321314,-2052462,-8417723,
%U -13374892,10841423,112595914,260687001,70989018,-1341964856,-4108283969,-3304416038,14960606999,58237169596,65268280922,-162368154719,-767619757924,-975329692910,1872486336165,9701425034093,12262136381593,-24192583755347,-118764516172484
%N Large-q series expansion for the exponential of the surface free energy of the square-lattice zero-temperature Potts antiferromagnet, in terms of the variable z = 1/(q - 1).
%H Andrey Zabolotskiy, <a href="/A238835/b238835.txt">Table of n, a(n) for n = 0..79</a> (from Jacobsen 2010)
%H Jesper Lykke Jacobsen, <a href="https://doi.org/10.1088/1751-8113/43/31/315002">Bulk, surface and corner free-energy series for the chromatic polynomial on the square and triangular lattices</a>, J. Phys. A: Math. Theor., 43 (2010), 315002; arXiv:<a href="https://arxiv.org/abs/1005.3609">1005.3609</a> [cond-mat.stat-mech], 2010.
%H J. Salas and A. D. Sokal, <a href="http://arxiv.org/abs/0711.1738">Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial</a>, J. Stat. Phys. 135 (2009) 279-373; arXiv:0711.1738 [cond-mat.stat-mech], 2007-2009. Mentions this sequence.
%Y Cf. A090673, A238836.
%K sign
%O 0,9
%A _N. J. A. Sloane_, Mar 14 2014
%E Name corrected by _Andrey Zabolotskiy_, Feb 12 2022